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Introduction: Breast cancer is the most common cancer in women that causes more deaths
than other cancers. Thermography is one of the methods of breast cancer diagnosis. The most
important challenge in early detection of these images can be human error or lack of access
to a skilled person. The use of artificial intelligence methods in image processing can be
effective in early detection and reduction of human error. The main aim of this research was
to introduce hybrid networks for intelligent diagnosis of breast cancer from thermographic
images.

Method: The thermographic images used in this study were collected from the DMR-IR
database. First, the main features of the images were extracted by deep convolutional
network (CNN). Then, FCNNs and SVM algorithms were used to classify breast cancer from
thermographic images.

Results: The accuracy rate for CNN_FC and CNN-SVM algorithms was 94.2% and 0.95%,
respectively. In addition, the reliability parameters for these classifiers were calculated as
92.1%, and 97.5%, and the sensitivity for each of these classifiers as 95.5%, and 94.1%,
respectively.

Conclusion: The proposed model based on the deep hybrid network has good accuracy
compared to similar algorithms; therefore, it can help doctors in the early diagnosis of breast
cancer through thermographic images and minimize human error.
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