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Abstract

Introduction: Rapid and accurate diagnosis of brain tumors significantly improves treatment
planning and survival rates. However, the manual review of multi-modal magnetic resonance
images is often slow and prone to errors due to lesion heterogeneity, similarity to healthy tissue,
and large data volumes. This study presents an automated framework that incorporates a
lightweight feed-forward neural network with an intrinsic attention mechanism and
quantum-behaved particle swarm optimization (QPSO). The aim of this study is to improve the
speed and accuracy of tumor identification while maintaining interpretability in clinical
environments with limited resources.

Method: Multimodal MRI images (T1, Tlce, T2, and FLAIR) were sourced from reputable
databases, including the Brain Tumor Segmentation Challenge (BraTS) and The Cancer Imaging
Archive (TCIA). The images underwent preprocessing, which included intensity normalization
(Z-score), noise reduction using Gaussian and median filters, and correction of intensity
inhomogeneity. Statistical, textural, and frequency-based features were extracted and reduced to
300 principal components using Principal Component Analysis (PCA). Feature weighting was
performed using a document relevance-inspired method. The proposed model, a five-layer
feedforward neural network (FNN) with a ReLU activation function and an internal attention
mechanism, was optimized using QPSO. Heatmaps were generated to enhance result
interpretability.

Results: The proposed model achieved an accuracy of 99.6 %, sensitivity of 99.4 %, and
specificity of 99.7 %, outperforming reference convolutional networks (97.1 %) and U-Net
architectures (96.2 %). The mean prediction time per image was less than 0.5 seconds, facilitating
real-time clinical use. Heatmaps produced by the attention layer, effectively highlighted abnormal
regions and enhanced interpretability. These metrics were consistently replicated across multiple
random splits, and qualitative evaluations by imaging specialists confirmed the absence of
specificity loss and the clinical relevance of the findings.

Conclusion: A feedforward network equipped with intrinsic attention and optimized with QPSO
demonstrated near-perfect accuracy and sub-second inference for brain tumor diagnosis on
multi-modal MRI. Its high performance on standard GPUs, combined with the generation of
intuitive heatmaps, positions this framework as a practical decision-support tool, particularly in
centers lacking advanced infrastructure. Future evaluations will focus on multi-center data and
deployment on edge devices to strengthen clinical adoption and regulatory compliance.

Keywords: Brain Tumor Detection, Feedforward Neural Network, Attention Mechanism,
Medical Image Segmentation
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