مقدمه: بیماری عروق کرونری، شایعترین نوع بیماری قلبی و عامل اصلی مرگ و میر در کشورهای صنعتی می باشد. این پژوهش با هدف طراحی یک سیستم خبرهی با دقت بالا برای تشخیص بیماری عروق کرونری قلب انجام شد.
روش: این مطالعه از نوع کاربردی بوده و از 14 ویژگی مربوط به 303 نفر که تحت آنژیوگرافی کرونری قرار گرفتند استفاده شده است. برای تشخیص دقیقتر بیماری عروق کرونری، نتایج سه روش کلاسهبندی شبکههای عصبی، بیزین ساده و نزدیکترین k همسایه با استفاده از تئوری ترکیب شواهد دمستر-شافر ترکیب شده است. از نسخه 7.3 نرم افزار دادهکاوی Weka و همچنین زبان برنامه نویسی C# در محیط .Net Framework برای پیاده سازی روش استفاده گردید. برای ارزیابی کارایی، روش 10-Fold cross validation بکار برده شد.
نتایج: نتایج نشان داد که میانگین دقت (Accuracy)، حساسیت (Sensitivity) و ویژگی (Specificity) در روش پیشنهادی به ترتیب 90/1 درصد، 89/09 درصد و 91/3 درصد می باشد که این مقادیر در مقایسه با هر یک از کلاسهبندهای شرکتکننده در ترکیب بیشتر بود و همچنین نسبت به تحقیقات مشابه، دقت بهتری در تشخیص افراد دارای بیماری عروق کرونری داشت.
نتیجه گیری: تحلیل نتایج نشان میدهند که در جامعه آماری مورد مطالعه، روش پیشنهادی عملکرد بهتری در تشخیص بیماری عروق کرونری دارد و می تواند بعنوان یک سیستم خبره، توسط متخصصین بالینی درگیر با بیماری قلبی، با هدف کمک به تصمیمگیریهای بالینی و کاهش خطاها، بهبود زمان انتظار در تشخیص بیماری و کاهش آزمایشات غیرضروری پزشکی استفاده گردد.
بازنشر اطلاعات | |
این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است. |