[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 7، شماره 1 - ( 3-1399 ) ::
جلد 7 شماره 1 صفحات 30-39 برگشت به فهرست نسخه ها
بهبود تخمین اثر بیولوژیکی ملکول‌های مهارکننده پروتئین کیناز، با استفاده از شبکه عصبی و مینیمم خطای جزئی
رویا آرین، علیرضا مهری دهنوی، فهیمه قاسمی
دکترای تخصصی بیوالکتریک، استادیار‌، گروه بیوانفورماتیک، دانشکده فناوری‌های نوین علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران
چکیده:   (712 مشاهده)
مقدمه: پروتئین کیناز عامل ایجاد بسیاری از بیماریها از جمله سرطان است؛ بنابراین مهار آن ها در درمان بسیاری از بیماری‌ها نقش بسزایی ایفا می‌کند. کشف داروهای جدید با روش‌های آزمایشگاهی، از جمله موضوعات هزینه بردار و زمان‌بر می‌باشد؛ یافتن مدلهای محاسباتی قابل اطمینان برای شناسایی مهار‌کنندهها می‌تواند هزینه‌ها را به حداقل برساند. هدف از این مطالعه به کار‌گیری روش شبکه عصبی جهت طبقه‌بندی ترکیبات در دو گروه فعال و غیر فعال و مدل رگرسیون خطی مینیمم خطای جزئی به منظور تخمین میزان اثر بیولوژیکی آنها است.
روش: در این پژوهش، پس از استخراج توصیفگرها از دادهها، به منظور جلوگیری از بیش برازش مدلها، کاهش ابعاد داده از طریق الگوریتم ژنتیک صورت پذیرفت. همچنین جهت طبقه‌بندی دادهها در کلاس فعال و غیر فعال از مدل شبکه عصبی و جهت تخمین مقادیر اثر بیولوژیکی ریزملکولها از مدل رگرسیون خطی مینیمم خطای جزئی استفاده شد.
نتایج: نتایج نشان داد بعد از کاهش بعد توصیفگرهای ملکولی، صحت مدل شبکه عصبی از 74/45%  به 86/7% تغییر یافت. این مدل در تعداد گره‌های لایه پنهان برابر با 6، صحت 86/7%، حساسیت 83/4%، اختصاصی بودن 89/6% و ضریب همبستگی متیو 73/2% را ارائه می‌دهد. مدل رگرسیون خطی مینیمم خطای جزئی نیز با میزان همبستگی متوسط 85/8% مقادیر بیولوژیکی را تخمین می‌زند.
نتیجه‌گیری: مدل طبقه‌بندی شبکه عصبی و مدل رگرسیون خطی مینیمم خطای جزئی تا میزان قابل قبولی می‌توانند مهارکننده‌های پروتئین کیناز را پیش‌بینی کنند و الگوریتم کاهش بعد ژنتیک عملکرد این مدل‌ها را بهبود می‌بخشد.
واژه‌های کلیدی: پروتئین کیناز، طبقه‌بندی، شبکه عصبی، رگرسیون، مینیمم خطای جزئی
متن کامل [PDF 1288 kb]   (181 دریافت)    
نوع مطالعه: پژوهشي اصیل | موضوع مقاله: بیوانفورماتیک
دریافت: 1398/2/2 | پذیرش: 1398/8/11
فایل صوتی [MP3 1894 KB]  (31 دریافت)
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arian R, Mehri Dehnavi A, Ghasemi F. Improving biological activity prediction of protein kinase inhibitors using artificial neural network and partial least square methods. Journal of Health and Biomedical Informatics. 2020; 7 (1) :30-39
URL: http://jhbmi.ir/article-1-391-fa.html

آرین رویا، مهری دهنوی علیرضا، قاسمی فهیمه. بهبود تخمین اثر بیولوژیکی ملکول‌های مهارکننده پروتئین کیناز، با استفاده از شبکه عصبی و مینیمم خطای جزئی. مجله انفورماتیک سلامت و زیست پزشکی. 1399; 7 (1) :30-39

URL: http://jhbmi.ir/article-1-391-fa.html



دوره 7، شماره 1 - ( 3-1399 ) برگشت به فهرست نسخه ها
مجله انفورماتیک سلامت و زیست پزشکی Journal of Health and Biomedical Informatics
Persian site map - English site map - Created in 0.06 seconds with 30 queries by YEKTAWEB 4227