دوره 8، شماره 3 - ( 9-1400 )                   جلد 8 شماره 3 صفحات 337-326 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Golkar A, Malekhosseini R, RahimiZadeh K, Yazdani A, Beheshti A. Development of a Model for Predicting Heart Attack Based on Fog Computing. jhbmi 2021; 8 (3) :326-337
URL: http://jhbmi.ir/article-1-640-fa.html
گل کار علی، ملک حسینی راضیه، رحیمی زاده کیوان، یزدانی آزیتا، بهشتی امین. توسعه مدل پیش‌بینی حمله قلبی در بستر محاسبات مه. مجله انفورماتیک سلامت و زیست پزشکی. 1400; 8 (3) :326-337

URL: http://jhbmi.ir/article-1-640-fa.html


دکترای مهندسی کامپیوتر، استادیار، گروه مهندسی برق و کامپیوتر، دانشگاه یاسوج، یاسوج، ایران
چکیده:   (2384 مشاهده)
مقدمه: مطالعات مختلف مزایای استفاده از محاسبات توزیع شده مه برای شبکه‌های اینترنت اشیاء را به اثبات رسانده‌اند؛ زیرا قابلیت‌های رایانش ابری همچون محاسبات، ذخیره‌سازی و پردازش را به گره‌های اینترنت اشیاء نزدیکتر کرده است. الگوی جدید محاسبات مه و محاسبات لبه با نزدیک کردن منابع به کاربران در مقایسه با محاسبات ابری، تأخیر کمتری برای پردازش داده‌ها ارائه داده است که این امر برای کاربردهای حساس به تأخیر همچون حوزه مراقبت سلامت از راه دور ضروری است و ارائه خدمات قابل اعتماد‌تر را فراهم می‌کند. در این پژوهش جهت پایش وضعیت بیماران قلبی یک سیستم مبتنی بر مه ارائه شده است.
روش: این پژوهش از نوع توسعه‌ای- کاربردی است. به منظور ارزیابی‌، از مجموعه داده بیماران عروق کرونر قلبی موجود در مخزن داده‌ یادگیری ماشین دانشگاه ارواین استفاده شد. در این سیستم، هر یک از علامت‌های بیمار قلبی بر اساس محدوده نرمال در لایه مه ارزیابی و وخامت حال بیمار بررسی می‌گردد. در این لایه، تقاضاها بر اساس تعداد علائمی که خارج از محدوده نرمال هستند، اولویت‌بندی می‌شوند. کارایی سیستم پیشنهادی از نظر مصرف پهنای باند، تأخیر و زمان پاسخ مورد ارزیابی قرار گرفت.
نتایج: سیستم ارائه شده در این پژوهش منجر به بهبود پهنای باند به میزان 23/77%، کاهش زمان تأخیر به میزان 23/71% و بهبود زمان پاسخ به میزان 32/95%  گردید.
نتیجه‌گیری: بهره‌گیری از صف اولویت به منظور اولویت‌بندی تقاضاها در لایه مه، زمان پاسخ‌دهی به درخواست‌های اورژانسی را کاهش می‌دهد.
متن کامل [PDF 1524 kb]   (909 دریافت)    
نوع مطالعه: پژوهشي اصیل | موضوع مقاله: داده کاوی
دریافت: 1400/6/30 | پذیرش: 1400/8/19

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله انفورماتیک سلامت و زیست پزشکی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Health and Biomedical Informatics

Designed & Developed by : Yektaweb