[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 5, Issue 2 (Summer 2018) ::
2018, 5(2): 274-285 Back to browse issues page
Diagnosis of Coronary Heart Disease using Mixture of Experts Method
Majid Hassanzadeh, Iman Zabbah , Kamran Layeghi
Abstract:   (2388 Views)
Introduction: Coronary Artery Disease (CAD) is one of the most common heart diseases and the main cause of mortality in men and women. This study aimed to predict the disease status using Neural Network compound (mixture of experts).
Methods: The present study was a diagnostic study conducted on 200 patients referred to a heart specialty center in Torbat-e-Heydarieh. Patients' files contained their demographic information including13 risk factors. A model for predicting CAD based on multilayer perceptron neural network and mixture of experts was produced.
Results: First, we used a neural network of multilayer perceptron with Propagation algorithm by different architectures. The best architecture could predict closed coronary artery with the accuracy of 71.7%. Then, by increasing the number of neural networks and training process, results were combined. Mixture of experts by liner method (majority voting) and nonlinear method (gating network) was applied and the accuracy rates of 75.8 percent and 78.3 percent were respectively obtained.
Conclusion: Angiography is an invasive diagnostic procedure with risk factors such as stroke and heart attack. Therefore, non-invasive methods should be used for the diagnosis of CAD. In this study, with increasing the number of learners and their nonlinear mixture, the accuracy of diagnosis was increased.
Keywords: Diagnosing Coronary Heart Disease, Artificial Neural Network, Mixture of expert
Full-Text [PDF 793 kb]   (1181 Downloads)    
Type of Study: Original Article | Subject: Artificial Intelligence in Healthcare
Received: 2017/08/13 | Accepted: 2017/11/26
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassanzadeh M, Zabbah I, Layeghi K. Diagnosis of Coronary Heart Disease using Mixture of Experts Method. Journal of Health and Biomedical Informatics. 2018; 5 (2) :274-285
URL: http://jhbmi.ir/article-1-216-en.html

Volume 5, Issue 2 (Summer 2018) Back to browse issues page
مجله انفورماتیک سلامت و زیست پزشکی Journal of Health and Biomedical Informatics
Persian site map - English site map - Created in 0.05 seconds with 32 queries by YEKTAWEB 3977