Introduction: Heart failure is a clinical syndrome resulting from structural or functional abnormalities of the heart, leading to reduced cardiac output or increased intracardiac pressure. When combined with cardiogenic shock, it becomes an emergency condition with a high mortality rate, necessitating immediate diagnosis and treatment. Accurate prediction of 30-day mortality in these patients is vital for timely care and patient survival. This study aimed to optimize the Random Forest algorithm by adjusting hyperparameters to more accurately predict 30-day mortality in heart failure patients with cardiogenic shock.
Method: In this research, data from 201 cardiac patients aged over 18 years who experienced cardiogenic shock at Rouhani Hospital in Babol in 2020, were used. Thirty-four selected features such as age, history of cardiac surgery, pH, lactate levels, diabetes, etc., were examined, and their one-month mortality was tracked through telephone follow-ups.
Results: The results showed that increasing age (above 57 years), decreasing pH (below 7.3), and elevating lactate levels (above 2) significantly increased the risk of 30-day mortality. By optimizing the hyperparameters of the Random Forest algorithm (ntree=1000 and mtry=14), prediction accuracy improved from 66.0% to 71.8%.
Conclusion: This study demonstrates that the accuracy of the Random Forest algorithm depends on its input hyperparameters and that optimizing these parameters can lead to a more precise prediction of mortality in heart failure patients with cardiogenic shock. With appropriate optimization, this algorithm can serve as an effective tool for the early detection of high-risk patients and timely provision.
Type of Study:
Original Article |
Subject:
Artificial Intelligence in Healthcare Received: 2024/06/3 | Accepted: 2024/07/9